
1

Topics

■ Introduction
■ Class & Objects
■ Streams in C++
■ Declarations and

Definitions
■ lvalue & rvalue
■ Function Prototyping
■ Default Function

Arguments

■ Inline functions
■ References
■ Parameter passing

mechanisms
■ Class in C++
■ Static Data Members
■ Function Overloading
■ Constructor
■ Friends

2

Topics

■ Inheritance
■ Destructor
■ Virtual Functions
■ Operator Overloading
■ Class Template
■ Vectors
■ Exception Handling

■ Click here to topic

3

Introduction to Object
Orientation

4

Characteristics of Object Oriented
Programming

Abstraction

Encapsulation

Inheritance

Polymorphism

5

Abstraction

I treat patients
I have a stethoscope
I wear white coat

Docto
r

Who am I ?

This is
Abstraction

Showing only the Essential
Part

6

Properties

Operations

Data

Functions

Entity

Real
World

Abstractio
n

Object-
Oriented
 Programming

Mapping real world entity to
OOP

Abstraction

7

"A view of a problem that extracts the essential information
relevant to a particular purpose and ignores the remainder of the
information." - [IEEE, 1983]

Abstraction specifies necessary and sufficient descriptions rather
than implementation details.

Since the classes use the concept of data abstraction, they are
known as Abstract Data Types (ADT).

Building up data types from the predefined data types is data
abstraction.

Abstraction

8

Characteristics of Object Oriented
Programming

Abstraction

Encapsulation

Inheritance

Polymorphism

9

Encapsulation

Behavior

State

Class

Bundling the data and functions into a
unit

10

• Hide implementation details
- Only expose the interface

- Change the implementation without affecting interface

Encapsulation

Interfac
e

Implementation

11

Bundling of data and functions together into a single unit (class).

The advantages of encapsulation are
Data hiding
Information hiding

The data is not accessible outside, only the function that are
wrapped in the class can access it. This insulation of data is called
as data hiding.

Hiding the implementation details of the wrapped functions from
the user is called as information hiding (Separating what is to be
done from how it is to be done).

Example: Driver may know how to use steering(how), but not the
steering mechanism(what).

Encapsulation

12

Characteristics of Object Oriented
Programming

Abstraction

Encapsulation

Inheritance

Polymorphism

13

Inheritance

Doctor

Neurologist Surgeon

states “is a”
Relationship

Generalization

SpecializationIs a Is a

14

Characteristics of Object Oriented
Programming

Abstraction

Encapsulation

Inheritance

Polymorphism

15

Polymorphism

� Polymorphic: from the Greek for “many forms”

Polymorphism means ability to take multiple or many
forms.

In programming languages, polymorphism means that
same code / operation / object behaves differently in
different context.

It provides a single interface to entities of different types.

16

Classes & Objects

17

Object

(Booch
)

State

Behavior

Identity

18

State

■ The state of an object encompasses all of
the (static) properties of the object plus the
current (dynamic) values of each of these
properties

■ A property is an inherent or distinctive
characteristic, trait, quality, or feature that
contribute to making an object uniquely that
object

■ We will use the word attribute, or data
member, to refer to the state of an object

19

Behavior

■ Behavior is how an object acts and reacts, in
terms of state changes and interactions with
other objects.

■ An operation is some action that one object
performs upon another in order to elicit a
reaction.

20

Identity

■ Identity is the property of an object that
distinguishes it from all other objects.

21

What is an object?

OBJECT

Operatio
ns

 Data

set of
methods

internal state

22

Class:

Putting behaviours(functions) and attributes(data) together.

A class does not exist in the memory of computer during
program execution.

Object:

An instance of a class. There can be more than one instance
for a class.

Example : Writing material is a class. Pen and Pencil are
 objects of the class.

Class & Object

23

 Account
acct_no
name
balance
withdraw()
deposit()

431245
Patrick
50567.78

431246
Meyer
35567.78

Account:
acct1

Account:
acct2

Class & Object

24

 Class
Class is a data type

It is the prototype or
model.
It does not occupy
memory.
It is compile-time
entity

 Object
Object is an instance
of class data type
It is a container

It occupies memory

It is run-time entity

Class & Object

25

26

C++ : The History

Bjarne Stroustrup developed C++ (originally named "C with
Classes") during the 1980s.

The name C++ was coined by Rick Mascitti in 1983.

Standard was ratified in 1998 as ISO/IEC 14882:1998

New version of the standard (known informally as C++0x) is
being developed.

27

Streams in C++

28

Output
Stream

Input
Devices

Output
Devices

Input Stream

Program

Input / Output Statements in C++
Stream - is an inter-mediator between the I/O device and the
user.

cin - predefined object for input stream.
cout - predefined object for output stream.

User should include the iostream.h.

Streams in C++

29

Streams for Input and Output

#include<iostream.h>
void main()
{
cout<<“Good Morning\n”;
}

 printf() is used in C

 Output operator is better than output function

#include<stdio.h>
void main()
{
printf(“Good
Morning\n”);
}

in
C

in
C++

Bore

Good Morning

30

Why << ?

 Assignment operator = a candidate !

 Input operator different from output operator

 cout=a=b means cout=(a=b)

 How about < and > ?

 << and >> are asymmetric not commonly used

31

Precedence of << is low

#include<iostream.h>
int main()
{
int a=1,b=2,c=3;
cout<<“a*b+c=“<< a*b+c<<‘\n’;
}

Streams for Input and Output

Output
:
5

32

Streams for Input and Output

■ Parentheses must be used when operator of
lower precedence available

#include<iostream.h>
int main()
{

int a=1,b=2,c=3;
cout<<“a^b/c =“<<(a^b/c)<<‘\n’;

}
Output
:
1

33

Streams for Input and Output

■ Left shift operator << can be used in an
output statement but it must appear within
parentheses

#include<iostream.h>
void main()
{
int a=1,b=2;
cout<<“a<<b=“<<(a<<b)<<‘\n’;
}

Output
:
4

34

C++ associates set of manipulators with the output
stream

#include<iostream.h>
void main()
{
int amount=123;
cout<<dec<<amount<<‘\n ‘
 <<oct<<amount<<‘\n ’
 <<hex<<amount;
}

Streams for Input and Output

Output:
123
173
7b

35

The stream cin is used for input

>> extraction operator (get from)

#include<iostream.h>
void main()
{

int amount;
cout<<“Enter the amount…\n”;
cin>>amount;
cout<<“The amount you entered was “; cout<<amount;

}

C++ sends the value that you enter to the variable amount

Streams for Input and Output

Enter the amount…
10
The amount you entered was
10

36

Comments

C++ comments is token // sequence. Wherever this
sequence appears (unless it is inside a string), everything
to the end of the current line is a comment
void main()
// I am a single line comment --- I am very useful…
/* *******we are multi line comments
 we too are very useful********** */

37

Declarations and
Definitions

38

Declarations

 Before any identifier can be used in a C++
program it must be declared

 i.e. Its type must be specified to inform the
compiler what kind of entity the name refers to

39

Declarations -Examples

char ch;
int count=1;
char* name=“NUTS”;
struct complex{float re,im;};
complex cvar;
extern complex sqrt(complex); (not defined)
extern int error_number; (not defined)

typedef complex point;
float real(complex* p) { return p->re;};
const double pi=3.141592653589;
struct user;(not defined)

40

 There must be exactly one definition for each name in
 a C++ program.

int count;
int count; error

Definition allocates appropriate memory.

Some definition specify a “value” for the entities they
 define

int sum=0;

For types, functions and constants the value is permanent. For
non constant data types the initial value may be changed later.

Definition

41

Declarations Vs Definition

■ Declarations
❑ It can be done more than once
❑ Tells the compiler about the entity type and name

■ Definition
❑ It can be done only ones
❑ Allocates memory for the variable

For automatic and register variables, there is no
difference between definition and declaration.

42

Scope
 A declaration introduces a scope

 A declaration of a name in a block can hide a declaration in an
enclosing block or a global name

int x;
void f()
{
int x;
x=1;
{
 int x;
x=2;
}
x=3;
}

int *p=&x;

Global x

Local x
Assign to Local X

Hides local x
Assign to Second local X

Assign to first local X

//take address of global X

43

#include<iostream.h>
int amount=456;
void main()
{
int amount=123;
cout<<::amount;
cout<<‘\n’;
cout<<amount;
}

Scope

Output:
456
123

Global scope

Local scope
(function)

:: unary scope resolution
operator

44

Lifetimes of Data Object

 The lifetime of a data object is the time that it remains in existence
during the execution of the program

Scope Vs Lifetime

 Identifier has a scope i.e. the part of the program in which it can be
referenced (or active).

 Data object has a lifetime i.e. the time it remains in existence
(period of time that a variable is assigned memory).

 A data object is a region of memory in which a value can be stored
it is characterized by its address, names (if any) type and its value.

45

lvalue and rvalue

46

 lvalue is an expression referring to an object or
function.

 lvalue is modifiable if it is not a function name, an array
name or constant.

 If E is an expression of pointer type the *E is an lvalue
referring to the object E points

E.g..

lvalue (location value)

lvalu
e

n=1
;

rvalu
e

47

lvalue Vs rvalue

■ In assignment operation
3 = n;
Is wrong because the left-hand side should be a

lvalue
Numeric literals, such as 3 and 3.14159, are

rvalues.

48

lvalue Vs rvalue

■ An identifier that refers to an object is an lvalue, but
an identifier that names an enumeration constant is
an rvalue. For example:
enum color { red, green, blue };

color c;
...
c = green; // ok
blue = green; // error

The second assignment is an error because blue is an
rvalue.

49

lvalue Vs rvalue

■ Although you can't use an rvalue as an lvalue, you can
use an lvalue as an rvalue. For example, given:

int m, n;
You can assign the value in n to the object designated

by m using:
m = n;

This assignment uses the lvalue expression n as an
rvalue.

▪ Strictly speaking, a compiler performs what the C++
Standard calls an lvalue-to-rvalue conversion to obtain
the value stored in the object to which n refers.

50

Function Prototyping

51

Function Prototyping
 ANSI C allows function prototyping

 borrowed from C++

 the return value, function name and number and type of
arguments can be specified in the function prototype, right
before main()

 While ANSI C allows function prototyping C++ requires it.

void swap(int&,int&);
Function prototyping must in
C++

52

Function Prototyping

#include<iostream.h>
void main()
{
void show();
show();
}
void show()
{
cout<<“Welcome to C++\n”;
} Output:

Welcome to C++

Scope of the
function is within
main()

Function
Prototype

Actual Definition

53

Function Prototyping

#include<iostream.h>

void main()
{
void f();

f();
}
void f()
{
show();
}
void show()
{
cout<<“Welcome to C++\n”;
}

void
show(); Scope Problem

54

Default Function
Arguments

55

Default Function Arguments

A C++ function can have default values for some of the parameters

#include<iostream.h>
void function_2(int i,int j=2);
main(void)
{
int i=1;
int j=5;
function_2(i,j);
function_2(j);
}
void function_2(int i,int j)
{ cout<<“i is “<<i<<‘\n’;
cout<<“j is “<<j<<‘\n’;
}

output
:
i is 1
j is 5
i is 5
j is 2

Default value for j

Default values should be specified in function
prototype

Function
Prototype

Actual
Definition

56

Default Function Arguments

What happens if j is initialized at the time that function is called???

#include<iostream.h>
void function_2(int i,int j=2);
main(void)
{
int i=1;
int j;
function_2(i,j=8);
}
void function_2(int i,int j)
{ cout<<“i is “<<i<<‘\n’;
cout<<“j is “<<j<<‘\n’;
}

output
:
i is 1
j is 8

57

Default Function Arguments
#include<iostream.h>
void function_2(int i,int
j=2);
main(void)
{
int i;
function_2(i);
}
void function_2(int i,int j=8)
{ cout<<“i is “<<i<<‘\n’;
cout<<“j is “<<j<<‘\n’;
}

Error: previously specified default argument cannot be
changed in the function

58

Default Function Arguments
#include<iostream.h>
void function_2(int i=1,int j, int k=2);
main(void)
{
int i,k;
int j=2;
function_2(i,j,k);
}
void function_2(int i, int j, int k)
{ cout<<“i is “<<i<<‘\n’;
cout<<“j is “<<j<<‘\n’;
cout<<“k is “<<k<<‘\n’;
}

Error: Default value
missing

Rule: Only the last
arguments in a parameter
list can be initialized.

No default value

59

Default Function Arguments

#include<iostream.h>
void function_2(int i,int j=2,k=3);
main(void)
{
int i,k;
int j=2;
function_2(i,j,k);
}
void function_2(int i, int j, int k)
{ cout<<“i is “<<i<<‘\n’;
cout<<“j is “<<j<<‘\n’;
cout<<“k is “<<k<<‘\n’;
}

output
:
i is 1
j is 2
k is 3

60

Default Function Arguments

#include<iostream.h>
void show (int =1,float =2.3, long =4);
void main()
{
show();
show(5);
show(6,7.8);
show(9,10.11,12L);
}
void show(int first, float second, long third)
{
cout<<“first = “<<first<<‘\n’;
cout<<“second = “<<second<<‘\n’;
cout<<“third is “<<third<<‘\n’;
}

Rule: You cant omit an
argument unless you
omit all the arguments to
the right

61

Default Function Arguments

 Default values provides flexibility

 Functions called with same arguments can be given default values

#include<iostream.h>
void print(int value, int base=10);
void main()
{
print(31):
print(31,10)
print(31,16)
print(31,2);
}

62

Inline functions

63

Inline functions

 C++ provides inline keyword

 A new copy of the function to be inserted in each place
it is called

 Inline reduces the overhead of a function calls

 Program becomes larger

 Unlike macros they have type checking rules and
 scope

64

double old_a;
#define DBL(a) ((old_a=a),((a)+(a)))
inline int dbl(int a) {old_a=a; return a+a;}

void f(int* pi, char *pc)
{
double old_a=7;
old_a=dbl(*pi++);
old_a=dbl(pc);//error argument type
mismatch
}

correct call will expand something like
int tmp;
old_a=((tmp=*pi++),(::old_a=tmp), (tmp+tmp)
to ensure the argument expression is evaluated only once

Macro
Inline
function

65

void f(int* pi, char *pc)
{
double old_a=7;
old_a=DBL(*pi++);
old_a=DBL(pc);//error in expansion
}

macro expands to
void f(int* pi, char *pc)
{
double old_a=7; // hides the global

‘old_a’
old_a=((old_a=*pi++),((*pi++)+(*pi++)));
old_a= ((old_a=pc),((pc)+(pc)));
}

Two errors
1) Adding pointers
2) Assigning char* to double

66

Inline Vs Macros

Inline Macros
Part of language
easy to debug

Difficult to debug

Not always
expanded

Always Expanded

Has type checking
rules and scope

Does not have these

Compile time Preprocessing

67

References

68

References
▪ A reference is an alternative name for an object

▪ It is an ‘alias’

▪ The unary operator & with typename identifies a
reference.

▪ The notation X& means reference to X
 int i=1;
 int &r=i;// r and i refer to the same int
 int x=r; //x=1
 r=2;//i=2

▪ A reference must be initialized.

69

Reference

Despite appearance, no operator operates on a
reference.

int ii=0;
int &rr=ii;
rr++; // ii is incremented

The value of a reference can not be changed after
initialization.

It always refers to the object it was initialized.

70

References
#include<iostream.h>
void main()
{
int actualint=123;
int
&otherint=actualint;
cout<<‘\n’<<actualint;
cout<<‘\n’<<otherint;
otherint++;
cout<<‘\n’<<actualint;
cout<<‘\n’<<otherint;
actualint++;
cout<<‘\n’<<actualint;
cout<<‘\n’<<otherint;
}

output
:
123
123
124
124
125
125

Otherint refers to actualint

71

Initializing a Reference

Reference should be initialized with explicitly giving it
something to refer to.

Some Exceptions

You need not initialize a reference when
 it is declared with extern
 it is a member of a class
 it is declared as a parameter
 in a function declaration or definition
 it is declared as a return type of a function

72

Reference to an object of different type

double dval=3.14159;
const int &Ir=100;
const int &Ia=dval
const double &dr=dval+1.0

A const reference can be initialized to an object of a
different type (provided there is a conversion from one type
to the other) as well as to non-addressable values such as
literal const

For non-const reference, the same initialization are not
legal.

73

In the case of non-addressable values such as literal
const and objects of a different type, to accomplish this
the compilers must generate a temporary object that the
reference actually addresses but that the user has no
access to it.

74

References and Pointers

References can be viewed as pointers without usual
dereferencing notation.
int actualint=123;
int *const intptr=&actualint;

intptr is a constant pointer, one cannot make it point to
another integer once it has been initialized to actualint.
same is true for references.

75

References and Pointers

 References can’t be manipulated like pointers

 They don’t have pointer arithmetic

 They directly act on the object they refer to.

 With pointers, one can use the const keyword to
declare constant pointers and pointers to constant

76

Reference to constant

One can declare a reference to a constant
int actualint=123;
const int& otherint=actualint;

This makes otherint a readonly alias for actualint. You can’t
make any modification to otherint, only to actualint

But one cannot declare a constant reference
int &const otherint=actualint;//error

meaningless all references are constant by definition

77

Parameter passing
mechanisms

78

Parameter passing mechanisms

Call by value

Call by address

Call by reference (in C++)

79

Call by Value:
Value of actual argument is passed to formal argument.
Changes made in the formal arguments are local to the block of
called function, it does not affect the actual arguments.

void swap (int, int); //prototype
main()
{ int x=4,y=5;

cout<<“x=“<<x<<“ y=“<<y; output: x=4 y=5
swap (x, y); //x, y actual args
cout<<“x=“<<x<<“ y=“<<y; output: x=4 y=5

}
void swap (int a, int b) //a, b formal args
{

int k;
k=a; a=b; b=k;

}

Parameter passing mechanisms

80

Call by Address:
Instead of passing values, address is passed. Hence changes
made in the formal arguments are reflected in the actual
arguments.void swap (int*, int*); //prototype

main()
{ int x=4,y=5;

cout<<“x=“<<x<<“ y=“<<y; output: x=4 y=5
swap (&x, &y);
cout<<“x=“<<x<<“ y=“<<y; output: x=5 y=4

}

void swap (int* a, int* b)
{

int k;
k=*a; *a=*b; *b=k;

}

Parameter passing mechanisms

81

Call by Reference:
In C++ it is possible to pass arguments by reference also.
When we pass arguments by reference, the ‘formal’ arguments in
the function become aliases to the ‘actual’ arguments in the calling
function.

void swap (int&, int&); //prototype
main()
{ int x=4,y=5;

cout<<“x=“<<x<<“ y=“<<y; output: x=4 y=5
swap (x, y);
cout<<“x=“<<x<<“ y=“<<y; output: x=5 y=4

}
void swap (int &a, int &b)
{

int k;
k=a; a=b; b=k;

}

Parameter passing mechanisms

82

References as Function Parameter
#include<iostream.h>
struct bigone
{int serno;
char text[1000];
}
bo={123,”This is a big
structure”};
void valfunc(bigone v1);
void ptrfunc(const bigone *p1);
void reffunc(const bigone &r1);
void main()
{
valfunc(bo);
ptrfunc(&bo);
reffunc(bo);
}

Pass by value

Pass by address

Pass by reference

83

void valfunc(bigone v1)
{
cout<<‘\n’<<v1.serno;
cout<<‘\n’<<v1.text;
}
void ptrfunc(const bigone *p1)
{
cout<<‘\n’<<p1->serno;
cout<<‘\n’<<p1->text;
}
void valfunc(const bigone &r1)
{
cout<<‘\n’<<r1.serno;
cout<<‘\n’<<r1.text;
}
The reference function cannot modify the b0 variable. reffunc’s
parameter is a reference to a constant (readonly)

84

References as Return values
Reference can also be used to return values from a
function.

int mynum=0;
int &num();
int &num() {return mynum;}
void main()
{
int i;
i=num();
num()=5;
}

return value of the num() is a reference initialized with the global
variable mynum. The expression num() acts as an alias for mynum.
i.e. a function call appear on the receiving end of an assignment
statement.

85

Reference as return values

int& rmax(int &m,int
&n)
{
if(m>=n)

return m;
else

return n;
}

This function returns a reference to m or n rather than the
value of m or n
since rmax(i,j) yields a reference rmax(i,j)=0 is possible.

86

Initialization of a reference is trivial when the
initializer is an lvalue
 The initializer of a plain T must be a lvalue or
even of type T
int num=10;
double &val=66.6; // not a lvalue
double &post=num; // diff data type Compile time

errors

87

A function which return reference can also be used as lvalue.
#include<iostream.h>
int &f();
int x;
main()
{

f()=100;
cout<<x<<‘\n’;

return 0;
}

Returning Reference from function

88

int &f()
{
return x; // not the value of the global variable x but the address
of x in reference form.
}

The statement f()=100;
puts the value 100 into x
int &f()
{
int x;
return x;
}
x is local the object one refers to does not go out of
scope

89

int &f()
.
.
.
int *x;
x=f();

A reference returned by a function cannot be
assigned to a pointer

Reference are similar to pointers, but they are not
pointers.

An independent reference can refer to a constant.
const int &ref=100; // valid

90

Class in C++

91

Class declaration

 Class declaration syntax :

class class-name
{

data-member declarations;
member-function declarations or definitions;

};

Member function can be defined either inside or outside the class.

Syntax to define the member function outside the class:

return-type classname::function-name(argument list)
{ …… };

92

Class Example
class account
{
private:

int acc_no;
char name[25];
float balance;

public:
void read()

 { cin>>acc_no>>name>>balance; }
void withdraw(float amt) // member function defined

 inside a class
{ balance-=amt; }
void deposit();

};
void account::deposit() // member function defined outside a class
{ float amt; // using binary scope resolution operator

cin>>amt;
balance += amt;

}

void main()
{ account a1,a2;

a1.read();
a2.read();
a1.withdraw(1000);
a2.deposit();

}

93

Members can be declared as

Private
visible only inside the class

Protected
private + visible to the immediately derived class

Public
globally visible

Note: The difference between the structure and class is the default
access specifier. In struct it is public, whereas in class it is private.

Access modifiers

94

class player
{ char name[20];
 int age;
public:
 void getdata(void);
 void putdata(void);
};
void player::getdata(0
{
 cout<<“\n Enter name: ”;
 cin>>name;
 cout<<“\n Enter age: ”;
 cin>>age;
}
void player::putdata(0
{
 cout<<“\n Player name: ”<<name;
 cout<<“\n Player age: ”;<<age;
}

Name cricket[0]

cricket[1]

main()
{
 player cricket[3];
 cout<<“Enter name and age of 3 players”;
 for (int i=0;i<3;i++)

cricket[i].getdata();
 for (int i=0;i<3;i++)

cricket[i].putdata();
}

Array of objects

}

}
Name

Name

age

age

age } cricket[2]

95

‘this’ pointer

‘this’ is the keyword can be used inside the class, which represents
the current object’s address.
example:
class account
{

int acc_no;
public:
void assign(int acc) // void assign(int acc_no)
{ //{

acc_no=acc; // this->acc_no=acc_no;
} //}

};
When a member function is called, it is automatically passed as an
implicit argument.

96

Introducing: const

void printSquare(const int& i)
{
 i = i*i;
 cout << i << endl;
}

int main()
{
 int i = 5;
 Math::printSquare(i);
}

Won’t compile.

Cannot modify the reference i since it is
a constant

97

Can also pass pointers to const

void printSquare(const int* pi)
{
 *pi = (*pi) * (*pi);
 cout << i << endl;
}
int main()
{
 int i = 5;
 printSquare(&i);
} Still won’t

compile.

pointer to a type constant int

98

Declaring things const

const River nile;

const River* nilePc;

River* const nileCp;

const River* const nileCpc

99

Read pointer declarations right to left

// A const River
const River nile;

// A pointer to a const River
const River* nilePc;

// A const pointer to a River
River* const nileCp;

// A const pointer to a const River
const River* const nileCpc

100

Static Data Members

101

Static Data Members
A “Static Data Member” is a single shared object to all objects of its class.

 Each object is having its own
 copy of CurrentRate

 Waste of space

 Has to update changes

 Inefficient

 Lead to Inconsistencies

class SavingsAccount
{
 public:

SavingsAccount();
void earnInterest();
{
 total+=CurrentRate*total;
}

 private:
char name[30];
float total;
float CurrentRate;

}; Not Advisable

102

Why not Global Variable?

?
Scop
e

103

Requirement

Every function will be able to modify its value

 A Kind of Global variable
 for an individual class

 All objects of a particular
 class access the same
 variable

Solution

 Static Data Members have
 only one copy of it allocated

 No matter how many
 instances of the class

 Data Member made static by
 prefixing with “static”
keyword

104

cur_bal=500
0

Object A

Object B

Shared by all
objects

RateofInt = 0.5

cur_bal=1500

 Static Data members may seem like global variables, but
 have class scope

Static Data Members

105

Static Data Members

class SavingsAccount
{
 public:

SavingsAccount();
void earnInterest();
{
 total+=CurrentRate*total;
}

 private:
char name[30];
float total;
static float CurrentRate;

};

106

 A static member can be public, making visible to the rest of the
 program

 If CurrentRate were a public member, one could access it as
 follows :

 It implies that only CurrentRate of myaccount is being modified

Static Data Members

void main()
{
 SavingsAccount myaccount;
 myaccount.CurrentRate =
0.050;
}

107

 A static data member is initialized outside the class definition in
the same manner as a Non member variable.

 The only difference is that the class scope operator syntax
 must be used.

Static Data Members

void main()
{
 float SavingsAccount::CurrentRate =
0.050;
}

108

Only one initialization of a static data member can occur within a
 program.

 Static member initializations should be placed in a file together with
 the definitions of the inline member functions and not in the class
 header file.

Static Data Members

include “savings.h”
float SavingsAccount::CurrentRate = 0.050;

SavingsAccount::SavingsAccount()
{
CurrentRate = 0.050;
// Cannot initialize a static member from within a constructor
// Because constructor may be called many times
}

109

 A static data member can appear as a default argument
 to a member function of the class.

 A non static member cannot.

extern int a;
class foo
{
 private:

int a;
static int b;

 public:
int mem1(int = a); // ERROR.. There is no associated

 class object
int mem2(int = b); // OK
int mem3(int = ::a); // OK

};

110

 A static data member can be an object of the class
 of which it is a member.

 A non static member is restricted to being declared as
 a pointer or reference to an object of its class.

Static Data Members

class Bar
{
 public:

//…
 private:

static Bar a;
Bar *b;
Bar c;

};

111

A “Static Member Function” is a member function that accesses only
the
Static data members of a class.

Static Member Functions

class SavingsAccount
{
 public:

SavingsAccount();
void earnInterest()
{ total+=CurrentRate*total; }
static void setinterest(float new_value)
{ CurrentRate = new_value; }

 private:
char name[30];
float total;
float CurrentRate;

};

112

 A static member function may be invoked through a class object
 or a pointer to a class object similar to a non static member
 function.

void main()
{
 SavingsAccount myaccount;
 myaccount.setinterest(0.50);
 SavingsAccount::
setinterest(0.50);
}

 A static member function does not contain a this pointer,
 since a static member function doesn’t act on any particular
instance
 of the class.
 A static member function

 can’t access any of the class’s non static
 members or call any non static member functions

Static Member Functions

113

// Employ1.h
// Header File
ifndef EMPLOY1_H
define EMPLOY1_H
class Employee
{
 public:

Employee(const char *,const char *) ;
~Employee();
char *getFirstName() const;
char *getLastName() const;
static int getcount();

 private:
char * firstName;
char * lastName;
static int count;

};
endif

Example Code

114

include<iostream.h>
include<string.h>
include<assert.h>
include “Employ1.h”

int Employee :: count = 0;
int Employee :: getcount() { return count; }
Employee :: Employee(const char *first, const char *last)//constructor
{
 firstName = new char [strlen(first)+1];
 assert(firstName != 0);
 strcpy(firstname,first);
 lastName = new char[strlen(last)+1];
 assert(lastName != 0);
 strcpy(lastName,last);
 ++count;
 cout<< “Employee Constructor for”
 << firstName
 << “ ”
 << lastName
 << “called.\n”;
}

Contd…

115

Employee :: ~Employee() //destructor
{
 cout << “~Employee() called for”
 << firstName << “ ” << lastName << endl;
 delete firstName;
 delete lastName;
}
char *Employee :: getFirstName() const
{
 char *tempPtr = new char
[strlen(firstName)+1];
 assert(tempPtr != 0);
 strcpy(tempPtr,firstName);
 return tempPtr;
}
char *Employee :: getLastName() const
{
 char *tempPtr = new char [strlen(lastName)+1];
 assert(tempPtr != 0);
 strcpy(tempPtr,lastName);
 return tempPtr;
}

Contd…

116

main()
{
 clrscr();
 cout << “Number of employees before instantiation is
”
 << Employee :: getcount() << endl;
 Employee * e1Ptr = new Employee(“Sujan”,”Baker”);
 Employee * e2Ptr = new Employee(“Roberts”,”Jones”);
 cout << “Number of employees after instantiation is ”
 << e1Ptr -> getcount() << endl;
 cout << “\nEmployee 1 : ”
 << e1Ptr -> getFirstName()
 << “ ” <<e1Ptr -> getLastName()
 << “\nEmployee 2 : ”
 << e2Ptr -> getFirstName()
 << “ ” <<e2Ptr -> getLastName()
 << “\n\n”;
delete e1ptr;
 delete e2Ptr;
 cout << “Number of employees after deletion is ”
 << Employee :: getcount() << endl;
 return 0;
}

Output:
Number of employees before instantiation is
0
Employee Constructor for Sujan Baker called
Employee Constructor for Roberts Jones called
Number of employees before instantiation is
2
Employee 1 : Sujan Baker

Employee 2 : Roberts Jones
~Employee() called for Sujan Baker
~Employee() called for Roberts Jones
Number of employees after deletion is 0

117

Function Overloading

118

Function Overloading
When several different function declarations (signatures) are
specified for a single name in the same scope, that name is
said to be overloaded
When that name is used, the correct function is selected by
comparing the types of the actual arguments with types of the
formal arguments

double abs(double);
int abs(double);
abs(1)//calls abs(int)
abs(1.0) // calls
abs(double)

Function different only in return types cannot be
overloaded

119

Function Overloading
Any type T, a T and a T& accept the same set of initializer
values, function with arguments types differing only in this
respect may not have the same name.

int f(int i)
{

//..
}
int f(int &r) // error; function types

//not sufficiently different
{

//..
}

120

Function Overloading
The following is possible

void f1(int);
void f2(int&);
void f3(const int&);
void g()
{
f1(2.2); //ok
f2(2.2); // error temporary needed
f3(2.2); //ok temporary used
}

such is applicable only for const references

121

Example:

#include <iostream.h>

int square(int x) { return x * x; }
double square(double y) { return y * y; }

void main()
{
 cout << "The square of integer 7 is " << square(7);
 cout << "\nThe square of double 7.5 is " << square(7.5)
 << '\n';
}

The square of integer 7 is 49
The square of double 7.5 is 56.25

Function Overloading

122

Function Overloading

Passing constant values directly can also lead to ambiguity as
internal type conversions may take place.

 Example: sum(int,int) and sum(float,float)

The compiler will not be able to distinguish between the two calls
made below

sum(2,3);
sum(1.1,
2.2);

123

Constructor

124

Constructors
Constructors are special member functions (should be declared in
public section) with the same name as the class. They do not return
values.

The constructor is invoked whenever an object of its associated class
is created.

A constructor is called whenever an object is defined or dynamically
allocated using the “new” operator.

They are normally used to allocate memory for the data members and
initialize them.

If no constructor is explicitly written then a default is created by the
compiler (not in the case of const and reference data members).

125

class Stack {
public:
Stack(int sz);
void Push(int value);
bool Full();
private:
int size;
int top;
int * stack;
};
Stack::Stack(int sz) {
size = sz;
top = 0;
stack = new int[size];
}

Constructor

Example

126

Example

■ To specify how an object is initialized we
write a constructor for it as a member
function.

■ This member function has the same name
as the class name i.e, Stack().

■ Stack(int) is the constructor in this example

127

Types of Constructors
Default Constructor

Parameterized Constructor

Overloaded Constructor

Constructor with Default Arguments

Dynamic Constructor

Copy Constructor

128

Default Constructor

The constructor without arguments.
class sum
{
 public:

int x, y;
sum();

};
sum::sum()
{

x=0;y=0;
}

Default
Constructor

129

Parameterized Constructors
Parameters can be passed to the constructors

class sum
{
 public:

int x, y;
sum(int i,int j);

};
sum::sum(int i,int j)
{

x=i;y=j;
}
void main()
{

sum s1(10,20);
sum s2 = sum(30,40);
cout<<"x= " <<

s1.x<<"y= "<<s1.y;
cout<<"x= " <<

s2.x<<"y= "<<s2.y;
}

x= 10 y=
20

Parameterized
Constructor

Object s1

Object s2 x= 30 y=
40

Constructor called
implicitly

Explicit

130

Overloaded Constructors

Overloaded Constructors - Multiple constructors declared in a
class

All constructors have different number of arguments

Depending on the number of arguments, compiler executes
corresponding constructor

Two arguments

No argumentssum() {x=10;y=20;};

sum (int, int) {x=i; y=j;};

131

Constructors with default arguments
Constructors can be defined with default arguments

class sum
{

int x, y;
 public:

void print()
{ cout<<“x = “<<x<<“y =“<<y; }
sum(int i, int j=10);

};

sum::sum(int i,int j)
{ x=i;y=j; }
void main()
{ sum s1(1),s2(8,9);

s1.print();
s2.print();

}

x= 1 y= 10Object s1

Object s2 x= 8 y= 9

Default value for
j=10 (Used by the
object s1)

132

Allocates the right amount of memory during execution for each
object when the object’s data member size is not the same using
new operator in the constructor.
The allocated memory should be released when the object is no
longer needed by delete operator in the destructor.

Dynamic Constructor

#include<string.h>
class String
{ char* data;
 public:
 String(const char* s = "")
 { data = new char[20];
 strcpy(data,s); }
 ~String()
 { delete [] data; }
 void display()
 { cout << data; }
};

void main()
{
 String s = "hello";

 cout <<”s=”;
 s.display();
 String s1(“hello world”);
 cout<<”s1= ”;
 s1.display();
}

s = hello
s1=hello world

133

Copy Constructors

Constructor that takes a reference to an object of the same class as
argument is Copy constructor. C++ calls a copy constructor (deep
copy or member-wise copy) to make a copy of an object.
Copy constructor is invoked in any of the following three ways.
✔ When one object explicitly initializes another.

❖ sum s3=s1;
✔ When a copy of an object is made to be passed to a function.

❖ show(s2);
✔ When a temporary object is generated.

❖ s3=fun();
If there is no copy constructor defined for the class, C++ uses the
default copy constructor which copies each data member, ie, makes a
shallow copy or bit-wise copy.

134

Copy Constructors

class sum
{
 public:

int x;
sum(){ }
sum(int i) {x=i;}
sum(sum &j) {x=j.x;}

};

void main()
{ sum s1(10);

sum s2(s1);
sum s3=s1;
cout<<"\nx in s1= " << s1.x;
cout<<"\nx in s2= " << s2.x;
cout<<"\nx in s3= " << s3.x;

}

Objects

x=10 x=10x=10

s1 s2 s3

Syntax:
class_name(class_name &object_name) {…} //by reference is a must

135

void main()
{ String s = "hello";
 String t = s; // same as String t(s);
 s.display();
 t.display();
 t.assign(“world”);
 s.display();
 t.display();
}

hello
hello
world
world

hello\0
data

data

Copy Constructors Shallow Copy
copies the
address
of s.data to t .data#include<string.h>

class String
{ char* data;
 public:
 String(const char* s = "")
 { data = new char[20];
 strcpy(data,s);
 }
 ~String()
 { delete [] data; }

 void assign(char *str)
 { strcpy(data,str); }

 void display()
 { cout << data; }
};

world\0
data

data

136

String(const String& s)
{
 data = new char[strlen(s.data)+1];
 strcpy(data, s.data);
}

Deep
copy

hello\0data

data
hello\0

Copy Constructors

Deep Copy copies the
value of the object s to t

137

Constructor with initialization list

class A
{

int a;
int b;

public:
A(int x):a(x),b(2*x){ }
void print(){

cout<<a<<b; }
};

Initialization of data members can also be done using initialization
list.
Syntax:

class_name(arg_list) : InitializationSection
 { }
 Example:

void main()
{

A object1(10);
object1.print()

}

For references and const data members constructor with
initialization list is a must (no default constructor is provided).

10 20

138

Destructor

139

Destructors
When an object goes out of scope then it is automatically
destroyed.

It performs clean up of the object (in the case of allocating
memory inside the object using new)

Destructors have the same name as class preceded with tilde (~)

They have no arguments and thus cannot be overloaded

Syntax:

~ classname() { }

Example:
~sum() { }

140

Allocating memory using new

Point *p = new Point(5, 5);

� new can be thought of a function with slightly strange

 syntax
� new allocates space to hold the object.
� new calls the object’s constructor.
� new returns a pointer to that object.

141

Deallocating memory using delete

// allocate memory
Point *p = new Point(5, 5);

...
// free the memory
delete p;

For every call to new, there must be
exactly one call to delete.

142

Using new with arrays

int x = 10;
int* nums1 = new int[10]; // ok
int* nums2 = new int[x]; // ok

Initializes an array of 10 integers on the heap.
C++ equivalent of
int* nums = (int*)malloc(x * sizeof(int));

143

Using new with multidimensional
arrays
int x = 3, y = 4;
int* nums3 = new int[x][4][5];// ok
int* nums4 = new int[x][y][5];// BAD!

Initializes a multidimensional array
Only the first dimension can be a variable. The rest
must be constants.
Use single dimension arrays to fake multidimensional
ones

144

Using delete on arrays

// allocate memory
int* nums1 = new int[10];
int* nums3 = new int[x][4][5];

...
// free the memory
delete[] nums1;
delete[] nums3;

Have to use delete[].

145

Friends

146

Friends

A friend of a class is a function that is not a member of
the class but is permitted to use the private and
protected member names from the class.

The name of the friend is not in the scope of the class

It is not called with the member access operator

It uses the friend keyword

147

Difference between friends and
member function

class X {
int a;
friend void friend_set(X*,int);
public:
void member_set(int);
};
void friend_set(X* p,int i) {p-
>a=i;}
void X::member_set(int i)
{a=i;}

void f()
{
X obj;
friend_set(&obj,10);
obj.
member_set(10);
}

148

Friend Class

Entire class can be declared as friend for
another class.

When a class is declared as friend, it means
the members of the friend class have access
to all the public / private / protected
members of the class in which the
declaration was made.

149

#include <iostream.h>
class two;
class one
{ int a1,b1;

public:
assign(void)
{ a1=5, b1=10; }
friend class two;

//friend void two::assign(one);
};
class two
{

int a,b;
public:
void let(int x, int y)
{ a=x; b=y; }

void print(void)
{ cout<<"a="<<a<<"b="<<b; }
void assign(one x)
{ a=x.a1;

b=x.b1;
}

};

void main(void)
{ one o1;

two t1;
o1.assign();
t1.let(4,2);
t1.print();
t1.assign(o1);
t1.print();

}

a = 4 b= 2
a= 5 b=10

Friend class example

150

Inheritance

151

Inheritance – is a relationship
■ Inheritance is a process of one class acquiring the features of another class.
■ It is a way of creating new class(derived class) from the existing class(base

class) providing the concept of reusability.

Current Acc

 overdraft

 Account
acct_no
name
balance
withdraw()
deposit()

Savings Acc

 interest

 Doctor
Name
Qualification
Operate

Cardiologist

 Heart
Specialist

Dentist

Tooth
Specialist

A Surgeon “is a” Doctor. A Doctor need not be a surgeon

152

Inheritance
■ By using the concepts of inheritance, it is possible to create a

new class from an existing one and add new features to it.

■ The class being refined is called the superclass or base class
and each refined version is called a subclass or derived class.

■ Semantically, inheritance denotes an “is-a” relationship between
a class and one or more refined version of it.

■ Attributes and operations common to a group of subclasses are
attached to the superclass and shared by each subclass
providing the mechanism for class level Reusability .

153

 Inheritance

 Student

Reg.No.
 Course
Marks

 Teaching Staff

Edn.Qual.
Designation

Specialization

 Person

Name
Sex
Age

“Person” is a generalization of “Student”.
 “Student” is a specialization of “Person”.

154

Defining Derived Class
■ The general form of deriving a subclass from a base class is as follows

■ The visibility-mode is optional.
■ It may be either private or public or protected, by default it is private.
■ This visibility mode specifies how the features of base class are visible to

the derived class.

Class derived-class-name : visibility-mode base-class-name
{
 ……………… //

……………….// members of the derived class
};

155

Access control

Base Class
Access Mode

Derived Class Access Modes
Private
derivation

Public derivation Protected derivation

Public Private Public Protected
Private Not inherited Not inherited Not inherited
Protected private Protected Protected

Function Type
Access Directly to

Private Public Protected
Class Member Yes Yes Yes

Derived Class Member No Yes Yes

Friend Yes Yes Yes

Friend Class Member Yes Yes Yes

Access control to class
members

Access Specifier and their scope

156

Access Specifiers with Inheritance

class X
{ int priv;
 protected:

int prot;
 public:

int publ;
void m();

};
void X::m()
{ priv =1; //Ok
 prot =1; //Ok
 publ =1; //Ok
}

class Y : public X
{ void mderived();
};
Y::mderived()
{ priv =1; //Error priv is private and

//cannot be inherited
 prot =2; // Ok
 publ=3; // Ok
}
void global_fun(Y *p)
{
p->priv = 1; //Error : priv is private of X
p->prot = 2; //Error : prot is protected and

 //the function global_fun()
 //is not a friend or a member of X or Y

p->publ =3; // Ok
}

157

Public, Protected and Private
derivation

private :
 int a1;

protected :
 int a2;

public :
 int a3;

private :
 int b1;

protected :
 int b2;

public :
 int b3;

private :
 int b1;

protected:
 int a2;
 int b2

public:
int b3;int a3;

 Public Derivation

 Class A Class B Class B: Public A

158

Public derivation - example
 class A
 {

 private : int a;
 protected: int b;
 public : void get_a() { cin>>a;}
 void get_b() { cin>>b;}

void print_a() { cout<<a;}
 void print_b() {cout<<b;}
 };
 class B : public A
{

private : int c;
 protected: int d;
 public : void get_c() { cin>>c;}
 void get_d() {cin >>d;}
 void get_all() { get_a(); cin>>b>>c>>d;}
 void print_cd(){ cout<<c<<d;}
 void print_all() { print_a(); cout<<b<<c<<d; }
};

void main()
 {
 B b1;
 b1.get_a();
 b1.get_b();
 b1.get_c();
 b1.get_d();
 b1.print_all();
 }

159

Protected derivation - example

private :
 int a1;

protected :
 int a2;

public :
 int a3;

private :
 int b1;

protected :
 int b2;

public :
 int b3;

private :
 int b1;

protected:
int a2;
int b2,a3;

public:
int b3;

Protected Derivation

• The inherited public and protected members of a base class become
protected members of the derived class

 Class A Class B Class B : Protected A

160

Protected derivation - example
class A
{

private: int a;
protected: int b;
public : void get_a() { cin>>a;}
void get_b() { cin>>b;}
void print_a() { cout<<a;}
void print_b() {cout<<b;}

};

class B : protected A
{ private : int c;

protected: int d;
public : void get_c() { cin>>c;}
void get_d() {cin >>d;}
void get_ab() { get_a(); get_b();}
void print_cd(){ cout<<c<<d;}
void print_all() { print_a(); cout<<b<<c<<d;};

 }

void main()
{
 B b1;
 b1.get_a(); //ERROR
 b1.get_b(); //ERROR
 b1.get_ab();
 b1.get_c();
 b1.get_d();
 b1.print_all();
}

161

Private derivation - example
The inherited public and protected members of a private derivation

become private members of the derived class.

private :
 int a1;

protected :
 int a2;

public :
 int a3;

private :
 int b1;

protected :
 int b2;

public :
 int b3;

private :
int b1;
int a2,a3;

protected:
int b2;

public:
int b3;

 Private Derivation

 Class A Class B Class B : private A

162

Private derivation - example
class A
{

private: int a;
protected: int b;
public : void get_a() { cin>>a;}
void get_b() { cin>>b;}
void print_a() { cout<<a;}
void print_b() {cout<<b;}

};

class B : private A
{

private : int c;
protected: int d;
public : void get_c() { cin>>c;}
void get_d() {cin >>d;}
void get_ab() { get_a(); get_b();}
void print_cd(){ cout<<c<<d;}
void print_abcd() { print_a(); cout<<b<<c<<d; }

};

Class C : public B
 { public :

void get_all()
{ get_a(); //ERROR

get_b(); //ERROR

get_ab(); //Ok
get_c(); //Ok
get_d(); //Ok }

 void print_all()
 { print_a(); //ERROR

print_b(); //ERROR
print_cd(); //Ok

 print_abcd(); //Ok } };
void main()
 { C c1;
 c1.get_a(); //ERROR
 c1.get_b(); //ERROR
 c1.get_c(); // Ok
 c1.get_d(); //Ok
 c1.getall(); //Ok
 c1.print_all(); //Ok
}

163

Types of Inheritance

Inheritance are of the following types

• Simple or Single Inheritance
• Multi level or Varied Inheritance
• Multiple Inheritance
• Hierarchical Inheritance
• Hybrid Inheritance
• Virtual Inheritance

164

Simple or Single Inheritance
■ This is a process in which a sub class is derived from only one superclass.

■ a Class Student is derived from a Class Person

 Person

Student subclass(derived
class)

superclass(base class) class Person

{ ….. };

class Student : public Person

{
 …………
 };

visibility
mode

165

Multilevel or Varied Inheritance
■ The method of deriving a class from another derived class is known as

Multiple or Varied Inheritance.

■ A derived class CS-Student is derived from another derived class Student.

 Person

Student

CS -Student

Class Person
{ ……};

Class Student : public Person
 { ……};
Class CS -Student : public Student

{ …….};

166

Multiple Inheritance
■ A class is inheriting features from more than one super class.

■ Class Part-time Student is derived from two base classes, Employee
and Student .

Employee Student

Part-time Student

Class Employee
{……..};

Class Student
{……..};

Class Part-time Student : public Employee,
 public Student

{…….};

167

Hierarchical Inheritance
■ Many sub classes are derived from a single base class

■ The two derived classes namely Student and Employee are derived
from a base class Person.

 Person

Student Employee

Class Person
{……};

Class Student : public Person
{……};

Class Employee : public Person
{……};

168

Hybrid Inheritance
■ In this type, more than one type of inheritance are used to derive a new sub

class.

■ Multiple and multilevel type of inheritances are used to derive a class PG-
Student.

 Person

Student

PG - Student

Gate Score

class Person
{ ……};

class Student : public Person
 { ……};
class Gate Score

{…….};
class PG - Student : public Student,

 public Gate Score
{………};

169

Virtual Inheritance

■ A sub class is derived from two super classes which in-turn have been
derived from another class.

■ The class Part-Time Student is derived from two super classes namely,
Student and Employee.

■ These classes in-turn derived from a common super class Person.

■ The class Part-time Student inherits, the features of Person Class via two
separate paths.

170

 Person

Student Employee

Part-time Student

Virtual Inheritance

Class Person
{……};

Class Student : public Person
{……};

Class Employee : public Person
{……};

Class Part-time Student : public Student,
 public Employee
{…….};

171

Derived Class Constructors

■ A base class constructor is invoked(if any) , when a derived class object is
created.

■ If base class constructor contains default constructor, then the derived class
constructor need not send arguments to base class constructors explicitly.

■ If a derived class has constructor, but base class has no constructor, then
the appropriate derived class constructor executed automatically whenever
a derived class object is created.

172

Derived Class Constructors
class B

{
 int x;

public :
B() { cout<<”B::B() Ctor…”<<endl;}

};
class D : public B

{
 int y;

public :
D() { cout<<”D::D() Ctor …”<<endl;}

};
void main()
{
 D d;
}

B::B() Ctor …
D::D() Ctor …

173

Derived Class Constructors
class B
{

 int a;
public :
B() { a = 0; cout<<”B::B() Ctor…”<<endl;}

 B(int x) { a =x; cout<<”B::B(int) Ctor…”<<endl;}
};
class D : public B
{ int b;

public :
D() { b =0; cout<<”D::D() Ctor…”<<endl;}
D(int x) { b =x; cout<<”D::D(int) Ctor…”<<endl;}
D(int x, int y) : B(y)
{ b =x; cout<<”D::D(int, int) Ctor…”<<endl;}

};
void main()
{

 D d;
 D d(10);
 D d(10, 20);

}

B::B() Ctor…
D::D() Ctor…
B::B() Ctor…
D::D(int) Ctor…
B::B(int) Ctor…
D::D(int, int) Ctor…

174

Derived Class Destructors
Derived class destructors are called before base class destructors.

class B
{
 int x;

public :
 B() { cout<<”B Constructor Invoked…”<<endl;

}
~B() { cout<<”B Destructor Invoked …”<<endl;}

};
class D : public B
{
 int y;

public :
D() { cout<<”D Constructor Invoked …”<<endl;

}
 ~ D() { cout<<”D Destructor
Invoked…”<<endl;}
};
void main()
{ D d; }

B Constructor Invoked…
D Constructor Invoked…
D Destructor Invoked…
B Destructor Invoked …

175

Overriding Member Functions
■ When the same function exists in both the base class and the derived class,

the function in the derived class is executed

class A
 {
protected : int a;
public :
void getdata() { cin>>a;}
void putdata() { cout << a;}
};
class B : public A
{
protected: int b;
public : void getdata()
{ cin>>a>>b;}
void putdata() { cout<<a<<b;}
};

void main()
{

B b1;
b1.getdata(); // B::getdata()

//is invoked
b1.putdata(); // B::putdata()

//is invoked
 b1.A::getdata(); // A::getdata()

// is invoked
 b1.A::putdata(); // A::putdata()

//is invoked }

176

Composition

class x
{ int i;
 public:
 x()

{i=0;}
 void set(int j)

{ i=j;}
 int read() const

{ return i;}
};

class y
{

int i;
 public:
 X x;
 Y()
 { i=0;}
 void f(intj)

{ i=j;}
 int g() const

{ return i;}
 };
int main()
{ Y y;

y.f(5);
y.x.set(10);

}

• Classes having objects of other classes as their data members -
composite classes

177

Inheritance : Summary
■ A subclass may be derived from a class and inherit its methods and

members.
■ Semantically, inheritance denotes an “is-a” relationship between a class

and one or more refined version of it.

■ Different types are
❖ Single inheritance
❖ Multiple inheritance
❖ Multilevel inheritance

■ Base class constructors are also executed whenever derived class
objects created.

■ Derived class can override a member function of a base class.

178

Virtual Functions and
Polymorphism

179

Polymorphism

• Greek word meaning - many or multiple forms.

• In programming languages, polymorphism means that some code or
operations or objects behave differently in different contexts

• It provides a single interface to entities of different types.

Types of Polymorphism

Polymorphism

Operator OverloadingFunction Overloading

Static Polymorphism Dynamic Polymorphism

Virtual Function

180

Polymorphism

Binding

❑ Determining a location in memory by the compiler
❑ Connecting a function call to a function body
❑ The location may represent the following

■ Variable names bound to their storage memory address (offset)
■ Function names bound to their starting memory address (offset)

Two kinds of binding

• Compile-Time Binding
• Run-Time Binding

181

Static Polymorphism

■ Compile-time binding or early binding is called as static
polymorphism.

■ Compile-Time Binding means

❑ Compiler has enough information to determine an address
(offset)

❑ Named variables / function calls have their addresses fixed
during compilation

182

Virtual Functions
■ Virtual function is a member function that is declared in the base class (using

keyword virtual) and is redefined in the derived class.

■ Dynamic binding means that the actual function invoked at run time depends on
the address stored in address.

■ Virtual functions are overriding functions to achieve dynamic binding.

class One
{ public:

virtual void whoami()
 {cout<<”One”<<endl; }

};
class Two : public One
{ public:

void whoami()
 {cout<<”Two”<<endl; }

};

void main()
{

One one, *ptr ;
Two two;
ptr=&one;
ptr->whoami();
ptr=&two;
ptr->whoami();

}
One
Two

183

Virtual Function
Implementation
VTABLE (Virtual Table):

■ The compiler creates a VTABLE for every class and its
derived class having virtual functions, which contains
addresses of virtual functions.

■ If no function is redefined in the derived class that is defined
as virtual in the base class, the compiler takes the address of
base class function.

VPTR (Virtual Pointer):

■ When objects of base or derived classes are created, a void
pointer is inserted in the VTable called VPTR.

184

class Base
{

public :
Base() { }
virtual void f1() { cout<<”base::f1()” << endl; }
virtual void f2() { cout << Base:: f2()”<<endl; }
void f3() { cout<<”Base :: f3()”<<endl; }

};
class Derived :public Base
{

public:
Derived() { }
void f1() { cout<<”Derived ::f1()”<<endl; }
};

void main()
{

Base b1;
Derived d1;
Base *p=&b1;
p->f1(); // base::f1
p->f2(); //base::f2
p->f3(); //base::f3
Base *q =&d1;
q->f1(); //Derived::f1
q->f2(); //Base::f2
q->f3(); //Base::f3

}

Virtual Function Implementation

185

Virtual Function Implementation
contd…

Vtable
s

Base::
f1()
Base::
f2()

Derived::
f1()

Object
s

Object
b1

Vptr

Object
d1

Vptr

P

q

Pointer
s

Base::
f2()

186

Abstract Class & Pure Virtual
Functions

Abstract Class

• A class that serves only as a base class from which other classes can
be derived

• If a base class declares contains pure virtual functions , no instance of
the class can be created.

Pure Virtual Functions

❑ In practical applications, the member functions of base classes is
rarely used for doing any operation (null body).

Syntax:
Virtual void display()=0;

187

Abstract Classes

■ An abstract class represents an abstract concept in C++
(such as Shape class)

1. Defines the interfaces that
all of the concrete classes
(subclasses) share

2. Does not define state and
implementation unless it is
common to all concrete
classes

3. Cannot be instantiated

Shap
e

Circl
e

Polygo
n

Rectang
le

188

Pure Virtual Function

class Base
{ public:

virtual void
show()=0;

// Pure Virtual function
};
class Derv1 : public Base
{

public:
 void show()
 { cout<<” In Derv 1”; }
};

class Derv2 : public Base
{ public:
 void show()
 { cout<<”In Derv2”; }
};
void main()
{

Base *List[2];
Derv1 dv1;
Derv2 dv2;
List[0]=&dv1;
List[1]=&dv2;
List[0]->show();
List[1]->show();

}

189

#include<string.h>
class Father
{ char* name;
 public:
 Father(const char* s = "")
 { name = new char[20];
 strcpy(name,s); }
 virtual ~Father()
 { delete [] name;
 }
 virtual void display()
 { cout << name;
 }
};

Virtual Destructor

class son: public Father
{
 char* name;
 public:
 son(const char* s = "")
 { name = new char[20];
 strcpy(name,s);
 }
 ~son()
 { delete [] name;
 }
 void display()
 { cout << name;
 }
};

■ When a derived object pointed to by the base class pointer is deleted, dtor
of the derived class as well as the dtors of all its base classes are invoked.

Contd..

190

void main()
{
 Father *bp,s = “ABC"; // same as Father s(“ABC");
 bp=&s;
 cout <<”s=”<<bp->display();
 delete bp;
 son s1=“XYZ”;
 bp=&s1;
 cout<<”s1=”<<bp->display();
 delete bp;
}

s = ABC
S1=XYZ

Virtual Destructor

191

Why not virtual
constructor??????

192

Rules for Virtual Functions

■ They should not be static.

■ They can be friend function of another class.

■ Constructors cannot be declared as virtual, but destructors can
be declared as virtual.

■ The virtual function must be defined in public section of the class.

193

Polymorphism - Summary

■ Function overloading and operator overloading are used to achieve
static polymorphism.

■ Virtual functions are used to achieve dynamic polymorphism.

■ Pointers to objects of base classes are type compatible with pointers to
objects of derived classes. Reverse is not possible.

■ Virtual functions can be invoked using pointer or reference.

■ Abstract base class is the one having pure virtual function.

194

Overloading Vs Overriding

Overloading
❑ Same name and scope of the class
❑ Different signature
❑ Doesn't require virtual keyword
Overriding
❑ Same name and Signature
❑ Different class scope
❑ Require virtual keyword

195

Operator Overloading

196

❑ Enabling C++’s operators to work with class objects
❑ Using traditional operators with user-defined objects
❑ A way of achieving static polymorphism is Operator overloading

Example:

■ Operator << is both the stream-insertion operator and the bitwise left-
shift operator

■ + and -, perform arithmetic on multiple types

4 + 5 - integer addition
3.14 + 2.0 - floating point addition
“sita” + "ram" - string concatenation

❑ Compiler generates the appropriate code based on the manner
in which the operator is used

Operator overloading

197

■ Overloading an operator

❑ Write function definition as normal
❑ Function name is keyword operator followed by the

symbol for the operator being overloaded
❑ operator+ used to overload the addition operator (+)

■ Two ways of overloading the operators using
▪ Member function
▪ Friend function

Operator overloading

198

Operator Overloading

■ Number of arguments in a member function for
■ Unary operator – 0
■ Binary operator – 1

ReturnType classname :: Operator OperatorSymbol (argument list)
{

\\ Function body
}

Operator to be overloaded

Syntax (using member function):

Keyword

199

Operator Overloading

Number of arguments in a friend function for
■ Unary operator – 1
■ Binary operator – 2

ReturnType operator OperatorSymbol (argument list)
{

\\ Function body
}

Keyword Operator to be overloaded
Syntax (using friend

function):

200

Binary Operator Overloading

■ To declare a binary operator function as a member function
▪ ret-type operatorop(arg)

class time
{

int hrs, mins;
public:

void set(int h,int m)
{ hrs=h;mins=m;}
void show()
{ cout<<hrs<<“:”<<mins; }
void sum(time t)
{ hrs+=t.hrs; mins+=t.mins; }
time operator + (time t)
{ time temp;

temp.hrs=hrs+t.hrs;
temp.mins=mins+t.mins;
return temp;}

};

void main(void)
{

time t1(10,20), t2(11,30);
t1.show();
t2.show();
// t1.sum(t2);
t1=t1+ t2;

 t1.show();
t2.show();

}
Hrs 10: 20 mins
Hrs 11: 30 mins
Hrs 21: 50 mins
Hrs 11: 30 mins

201

■ To declare a binary operator function as a friend function
▪ ret-type operatorop(arg1, arg2)

class time
{

int hrs, mins;
public:

void set(int h,int m)
{ hrs=h;mins=m;}
void show()
{ cout<<hrs<<“:”<<mins; }
friend time operator + (time,time);

};
time operator + (time t1,time t2)
{ time temp;

temp.hrs=t1.hrs+t2.hrs;
temp.mins=t1mins+t2.mins;
return temp; }

void main(void)
{

time t1(10,20), t2(11,30);
t1.show();
t2.show();
t1=t1+ t2;

 t1.show();
t2.show();

}
Hrs 10: 20 mins
Hrs 11: 30 mins
Hrs 21: 50 mins
Hrs 11: 30 mins

Binary Operator Overloading

202

Binary Operator Overloading

class Point {
 public:
 int x,y;
 Point () { };
 Point (int,int);
 Point operator + (Point);
};
Point::Point (int a, int b) {
 x = a;
 y = b;
}

Point Point::operator+ (Point P)
{
 Point temp;
 temp.x = x + P.x;
 temp.y = y + P.y;
 return (temp);
}
int main ()
{
 Point a (3,1);
 Point b (1,2);
 Point c;
 c = a + b; // c=a.operator+(b);
 cout << c.x << "," << c.y;
 return 0;
} 2,3

203

Operator Overloading

204

Operator Overloading

Using member function Using friend function

Operators =
()
[]
->

<<
>>

Operators that can be overloaded using member and friend functions:

205

Unary Operators Overloading

■ To declare a unary operator function as a
member function

▪ return-type operatorop()
class Point
{ int x, y;
 public:
 Point() {x = y = 0; }

Point& operator++()
{

x++;
y++;
return *this;

}
Point& operator--()
{ x--; y--; return *this;}

};

void main()
{
Point p, p1,p2;
p1= p++;
p2= --p;
}

206

■ To declare a unary operator function as a friend function
▪ ret-type operatorop(arg)

class Point
{ int x, y;
 public:
 Point() {x = y = 0; }

Point& operator++()
{ x++;

y++;
return *this; }

friend point operator –(point);
};
Point operator--(point &p)
{ p.x--;
 p.y--;
 return p;
}

void main()
{

Point p, p1,p2;
p1= p++;
p2= --p;

}

Unary Operators Overloading

207

Unary Operators Overloading

• There is no distinction between the prefix and postfix overloaded operator
functions.

• The new syntax for postfix operator overloaded function is
ret-type operatorop(int) // member function
ret-type operatorop(arg,int) // friend function

class Point
{ int x, y;
 public:
 Point() {x = y = 0; }

Point& operator++(int)
{ x++; y++; return *this; }

Point& operator--()
{ x--; y--; return *this;}

};

void main()
{
Point p, p1,p2;
p1= p++;
p2= --p;
}

208

friend Point& operator++(Point&) // Prefix increment
friend Point& operator++(Point&, int) // Postfix increment
friend Point& operator--(Point&) // Prefix decrement
friend Point& operator--(Point&, int) // Postfix
decrement

• The same operators can be defined using the following
(friend) function declarators:

Unary Operators Overloading

209

Friend operator Functions Add
Flexibility
■ Overloading an operator by using a friend or a member

function makes, no functional difference.

■ In exceptional situation in which overloading by using a friend
increases the flexibility of an overloaded operator.

■ Example:
■ Object + 100
■ 100 + object

❑ In this case, it is integer that appears on the left.

210

Friend operator Functions Add
Flexibility
class Point
{

public:
int x,y;
Point () {};
Point (int,int);

friend Point operator +(int,
Point);

friend Point operator +(Point,
int);

};
Point::Point (int a, int b)
{ x = a; y = b;}
Point operator+ (Point P, int i)
{ Point temp;
 temp.x = P.x + i;
 temp.y = P.y + i;
 return (temp); }

Point operator+ (int i, Point P)
{ Point temp;
 temp.x = i + P.x;
 temp.y = i + P.y;
 return (temp); }

void main ()
{ Point a (3,1);
 Point b (1,2);
 Point c;
 c = a + 5;

cout << c.x << "," << c.y;
c=10+a;
cout << c.x << "," << c.y;

}

211

Operator Functions
as Class Members vs. as friend Functions

■ Member vs non-member
❑ Operator functions can be member or non-member functions.
❑ When overloading (), [], -> or any of the assignment operators,

a member function must be used.
■ Operator functions as member functions

❑ Leftmost operand must be an object (or reference to an object)
of the class
■ If left operand of a different type, operator function must be

a non-member function
■ Operator functions as non-member functions

❑ Must be friends if needs to access private or protected
members

❑ Enable the operator to be commutative

212

Assignment operator overloading

■ Assignment operator (=) is, strictly speaking, a binary operator. Its
declaration is identical to any other binary operator.

Exceptions:

■ It must be a non-static member function. No operator = can be
declared as a non-member function.

■ It is not inherited by derived classes.

■ A default operator= function can be generated by the compiler for
class types if none exists (bitwise shallow copy)

■ User defined operator= function performs member wise deep copy.

213

void main()
{
 String s = "hello";
 String t;
 t=s;
 s.display();
 t.display();
 t.assign(“world”);
 s.display();
 t.display();
}

hello
hello
world
world

hello\0
data

data

Default
assignment

class String
{
 char* data;
 public:
 String(){ data=NULL; }
 String(const char* s = "")
 { data = new char[20];
 strcpy(data,s);
 }
 ~String()
 { delete [] data;
 }
 void assign(char *str)
 { strcpy(data,str);
 }
 void display()
 { cout << data;
 }
};

world\0
data

data

Assignment operator overloading

214

void operator=(const String& s)
{
 data = new char[strlen(s.data)+1];
 strcpy(data, s.data);
}

Deep
copy

hello\0data

data
hello\0

Overloaded operator function

Assignment operator overloading

215

Overloaded << and >> operators
❑ Overloaded to perform input/output for user-defined types
❑ Left operand of types ostream & and istream &
❑ Must be a non-member function because left operand is not an object of the class
❑ Must be a friend function to access private data member

Example:cin>>account;
cout<<account;

Syntax:

Overloading IO Stream operators

friend ostream & operator << (ostream &out, arg)
{ //display attributes

return out
}

Keywor
d

Output
stream

Reference
types

Keywor
d User defined

object

Ostream object:
coutOstream

operator

216

Overloading IO Stream operators
class Point
{

public:
int x,y;
Point () {};
Point (int,int);

friend ostream& operator<<(ostream&, const
point&);

friend istream& operator>>(istream&, const point&);
};
Point::Point (int a, int b)
{ x = a; y = b;}
ostream& operator<<(ostream& os, const Point& a)
{ os << a.x;

os << a.y;
 return os;

}
istream& operator>>(istream& is, Point& a)
{ is >> a.x;

is >> a.y;
return is;

}

void main()
{

Point p1(2,3),
p2(0,0);

cin>>p2;
cout<<p1;
cout<<p2;

}

217

Type Conversion
■ Compiler supports data conversion of only built-in data types.

■ In case of user defined data type conversion, the data conversion interface
function must be explicitly specified by the user.

■ A single argument constructor or an operator function could be used for
conversion of objects of different classes.

Conversion
type Source class Destination class

Basic class Not applicable Constructor

Class basic Casting Operator Not Applicable

Class class Casting operator Constructor

218

■ To convert basic to user-defined data type, single argument constructor conversion
routine should be written in the destination object class.

class Meter
{

float length;
public:
Meter (float len)
{ length=len; }

};
main()
{

float length1=15.56;
meter1=length1; // Converts basic data item length1 of float
type to the object meter1 by // invoking the one-argument
constructor.

}

This constructor is invoked while creating objects of class Meter using a single
argument of type float.

It converts the input argument represented in centimeters to meters and assigns
the resultant value to length data member.

Basic to User defined data type

219

■ To convert user-defined data type to basic, operator
function should be written in the source object class.

class Meter
{

float length;
public:
Meter (float len)
{ length=len; }

 operator float()
{ float len_cms;

len_cms = length * 100.0; // meter to cm.
return (len_cms);

}
};

User defined data type to Basic Conversion

main()
{

float length2;
Meter meter2(100);
length2=(float)

meter2;
// length2 = float(meter2);
}

220

Conversion routine in source class: Operator function

■ To convert user-defined data type to another user-defined data type,
operator function should be written in the source object class.

 class Meter
{ float length;

public:
Meter (float len)
{ length=len; }

 operator CentiMeter()
{ return CentiMeter(len*100.0); }

};
class CentiMeter
{ float Clength;

public:
CentiMeter (float len)
{ Clength=len; }

 };

Class to Class Conversion

main()
{

Meter m(5);
CentiMeter cm;
cm=m;

}

221

Conversion routine in destination class: constructor function

■ To convert user-defined data type to another user-defined data type,
constructor function should be written in the destination object class.

class Meter
{ float length;

public:
Meter (float len)
{ length=len; }
float getlength(){ return length;}

};
class CentiMeter
{ float Clength;

public:
CentiMeter (float len)
{ Clength=len; }

 CentiMeter(Meter m)
{ Clength= m.getlength()*100.0);}

};

Class to Class Conversion

main()
{

Meter m(5);
CentiMeter cm;
cm=m;

}

222

Restrictions on Operator
Overloading

■ Overloading restrictions
❑ Precedence and associativity of an operator cannot be changed
❑ Arity (number of operands) cannot be changed

■ Unary operators remain unary, and binary operators remain binary
■ Operators &, *, + and - each have unary and binary versions
■ Unary and binary versions can be overloaded separately

■ No new operators can be created
❑ Use only existing operators

■ No overloading operators for built-in types (cannot redefine the
meaning of operators)
❑ Cannot change how two integers are added
❑ Produces a syntax error

223

Implementing Operator Overloading

■ Two ways:
❑ Implemented as member functions
❑ Implemented as non-member or Friend functions

■ the operator function may need to be declared as a
friend if it requires access to protected or private data

■ Expression obj1@obj2 translates into a function call
❑ obj1.operator@(obj2), if this function is defined within

class obj1
❑ operator@(obj1,obj2), if this function is defined outside

the class obj1

224

1. Defined as a member function

Implementing Operator Overloading

class Complex {
 ...
 public:
 ...
 Complex operator +(const Complex

&op)
 {
 double real = _real + op._real,
 imag = _imag + op._imag;
 return(Complex(real, imag));
 }
 ...
 };

c =
a+b;

c = a.operator+
(b);

225

2. Defined as a non-member function

Implementing Operator Overloading

class Complex {
 ...
 public:
 ...
 double real() { return _real; }
 //need access functions
 double imag() { return _imag;

}
 ...
 };

Complex operator +(Complex &op1, Complex
&op2)

{
 double real = op1.real() + op2.real(),
 imag = op1.imag() + op2.imag();
 return(Complex(real, imag));
}

c =
a+b;

c = operator+ (a, b);

226

3. Defined as a friend function

Implementing Operator Overloading

class Complex {
 ...
 public:
 ...
 friend Complex operator +(
 const Complex &,
 const Complex &
);
 ...
 };

Complex operator +(Complex &op1, Complex
&op2)

{
 double real = op1._real + op2._real,
 imag = op1._imag + op2._imag;
 return(Complex(real, imag));
}

c =
a+b;

c = operator+ (a, b);

227

Overloading stream-insertion
and stream-extraction operators

■ In fact, cout<< or cin>> are operator overloading built in C++
standard lib of iostream.h, using operator "<<" and ">>"

■ cout and cin are the objects of ostream and istream classes,
respectively

■ We can add a friend function which overloads the operator <<

friend ostream& operator<< (ostream &ous, const
Date &d);

ostream& operator<<(ostream &os, const
Date &d)
{
 os<<d.month<<“/”<<d.day<<“/”<<d.year;
 return os;
}
…
cout<< d1; //overloaded operator

ostream& operator<<(ostream &os, const
Date &d)
{
 os<<d.month<<“/”<<d.day<<“/”<<d.year;
 return os;
}
…
cout<< d1; //overloaded operator

cout ---- object of
ostream
cout ---- object of
ostream

228

Overloading stream-insertion
and stream-extraction operators

■ We can also add a friend function which overloads the
operator >>

istream& operator>> (istream &in, Date &d)
{
 char mmddyy[9];

 in >> mmddyy;

 // check if valid data entered
 if (d.set(mmddyy)) return in;

 cout<< "Invalid date format: "<<d<<endl;
 exit(-1);
 }

friend istream& operator>> (istream &in,
Date &d);

cin ---- object of
istream

cin >> d1;

229

Class Template

230

Class Template
• A C++ language construct that allows the compiler

to generate multiple versions of a class by allowing
parameterized data types.

Template < TemplateParamList
>
ClassDefinition

Class Template

TemplateParamDeclaration: placeholder
 class typeIdentifier

typename variableIdentifier

231

Example of a Class Template

template<class ItemType>
class GList
{
 public:
 bool IsEmpty() const;
 bool IsFull() const;
 int Length() const;
 void Insert(/* in */ ItemType item);
 void Delete(/* in */ ItemType item);
 bool IsPresent(/* in */ ItemType item) const;
 void SelSort();
 void Print() const;
 GList(); // Constructor
 private:
 int length;
 ItemType data[MAX_LENGTH];
};

Template
parameter

232

Instantiating a Class Template
• Class template arguments must be

explicit.
• The compiler generates distinct class

types called template classes or
generated classes.

• When instantiating a template, a
compiler substitutes the template
argument for the template parameter
throughout the class template.

233

Instantiating a Class Template

// Client code

GList<int> list1;
GList<float> list2;
GList<string> list3;

list1.Insert(356);
list2.Insert(84.375);
list3.Insert("Muffler bolt");

To create lists of different data types

GList_int list1;
GList_float list2;
GList_string list3;

template
argument

Compiler generates 3
distinct class types

234

Substitution Example

class GList_int
{
public:

void Insert(/* in */ ItemType item);

 void Delete(/* in */ ItemType item);

 bool IsPresent(/* in */ ItemType item) const;

private:
 int length;
 ItemType data[MAX_LENGTH];
};

int

int

int

int

235

Function Definitions for Members of a
Template Class
template<class ItemType>

void GList<ItemType>::Insert(/* in */ ItemType item)

{

 data[length] = item;

 length++;

}

//after substitution of float

void GList<float>::Insert(/* in */ float item)

{

 data[length] = item;

 length++;

}

236

Another Template Example:
passing two parameters

template <class T, int size>
 class Stack {...

T buf[size];
 };
Stack<int,128> mystack;

non-type parameter

237

Vectors

238

Vector

■ A sequence that supports random access to
elements
❑ Elements can be inserted and removed at the

beginning, the end and the middle
❑ Constant time random access
❑ Commonly used operations

■ begin(), end(), size(), [], push_back(…), pop_back(),
insert(…), empty()

239

Example of vectors

// Instantiate a vector
vector<int> V;

// Insert elements
V.push_back(2); // v[0] == 2
V.insert(V.begin(), 3); // V[0] == 3, V[1] == 2

// Random access
V[0] = 5; // V[0] == 5

// Test the size
int size = V.size(); // size == 2

240

Exception Handling

241

Exception

• An exception is a unusual, often
unpredictable event, detectable by
software or hardware, that requires
special processing occurring at runtime

• In C++, a variable or class object that
represents an exceptional event.

242

Handling Exception

• If without handling,
• Program crashes
• Falls into unknown state

• An exception handler is a section of program
code that is designed to execute when a
particular exception occurs

• Resolve the exception
• Lead to known state, such as exiting the

program

243

Standard Exceptions

■ Exceptions Thrown by the Language
■ new

■ Exceptions Thrown by Standard Library
Routines

■ Exceptions Thrown by user code, using
throw statement

244

The throw Statement

 Throw: to signal the fact that an
exception has occurred; also called raise

 ThrowStatement

throw Expression

245

The try-catch Statement

try
 Block
catch (FormalParameter)
 Block
catch (FormalParameter)

TryCatchStatement

How one part of the program catches and processes
the exception that another part of the program throws.

FormalParameter
DataType VariableName

…

246

Example of a try-catch Statement
 try
{

// Statements that process personnel data and maythrow
 // exceptions of type int, string, and SalaryError
}
catch (int)
{
 // Statements to handle an int exception
}
catch (string s)
{
 cout << s << endl; // Prints "Invalid customer age"
 // More statements to handle an age error
}
catch (SalaryError)
{
 // Statements to handle a salary error
}

247

Execution of try-catch

 No
 statements

throw
an exception

Statement
following entire

try-catch
statement

A
 statement

throws
an exception Excepti

on

Handler

Statements to deal with exception are
executed

Control moves
directly to exception
handler

248

Throwing an Exception to be
Caught by the Calling Code

 void Func4()
 {

 if (error)
 throw ErrType();

}

Normal
return

void Func3()
{

 try
 {

 Func4();

 }
 catch (ErrType)
 {

 }

}

Function
call

Return from
thrown
exception

249

Practice: Dividing by ZERO

Apply what you know:
int Quotient(int numer, // The numerator

 int denom) // The denominator

{

 if (denom != 0)

 return numer / denom;

 else

 //What to do?? do sth. to avoid program //
crash

}

250

int Quotient(int numer, // The numerator

 int denom) // The denominator

{

 if (denom == 0)

 throw DivByZero();

//throw exception of class DivByZero

 return numer / denom;

}

A Solution

251

A Solution

// quotient.cpp -- Quotient
program

#include<iostream.h>
#include <string.h>
int Quotient(int, int);
class DivByZero {}; // Exception
class
int main()
{
 int numer; // Numerator
 int denom; // Denominator

 //read in numerator
 and denominator

while(cin)
{
 try
 {
 cout << "Their quotient: "

<< Quotient(numer,denom)
<<endl;
 }

catch (DivByZero)//exception
handler
 {

cout<<“Denominator can't be 0"<<
endl;
 }
 // read in numerator and
denominator
}
return 0;
}

252

End

